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Abstract. The generalizability of empirical findings to new environ-
ments, settings or populations, often called “external validity,” is essen-
tial in most scientific explorations. This paper treats a particular prob-
lem of generalizability, called “transportability”, defined as a license to
transfer causal effects learned in experimental studies to a new popula-
tion, in which only observational studies can be conducted. We intro-
duce a formal representation called “selection diagrams” for expressing
knowledge about differences and commonalities between populations
of interest and, using this representation, we reduce questions of trans-
portability to symbolic derivations in the do-calculus. This reduction
yields graph-based procedures for deciding whether causal effects in
the target population can be inferred from experimental findings in
the study population. When the answer is affirmative, the procedures
identify what experimental and observational findings need be obtained
from the two populations, and how they can be combined to ensure
bias-free transport.
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1. INTRODUCTION: THREATS VS. ASSUMPTIONS

Science is about generalization, and generalization requires that conclusions
obtained in the laboratory be transported and applied elsewhere, in an environ-
ment that differs in many aspects from that of the laboratory.

Clearly, if the target environment is arbitrary, or drastically different from
the study environment nothing can be transferred and scientific progress will
come to a standstill. However, the fact that most studies are conducted with the
intention of applying the results elsewhere means that we usually deem the target
environment sufficiently similar to the study environment to justify the transport
of experimental results or their ramifications.

Remarkably, the conditions that permit such transport have not received sys-
tematic formal treatment. The standard literature on this topic, falling under

Computer Science Department, Los Angeles, CA, 90095-1596, USA. (e-mail:
judea@cs.ucla.edu; eb@cs.ucla.edu).

∗This research was supported in parts by NIH grant #1R01 LM009961-01, NSF grant #IIS-
0914211, and ONR grant #N000-14-09-1-0665.

1

Submitted, Statistical Science. 
 

TECHNICAL REPORT 
R-400 

May 2012



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAY 2012 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2012 to 00-00-2012  

4. TITLE AND SUBTITLE 
External Validity: From do-calculus to Transportability across 
Populations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California, Los Angeles,Computer Science Department,Los 
Angeles,CA,90095-1596 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The generalizability of empirical findings to new environments settings or populations, often called
?external validity,? is essential in most scientific explorations. This paper treats a particular problem of
generalizability, called ?transportability?, defined as a license to transfer causal effects learned in
experimental studies to a new population in which only observational studies can be conducted. We
introduce a formal representation called ?selection diagrams? for expressing knowledge about differences
and commonalities between populations of interest and, using this representation, we reduce questions of
transportability to symbolic derivations in the do-calculus. This reduction yields graph-based procedures
for deciding whether causal effects in the target population can be inferred from experimental findings in
the study population. When the answer is affirmative, the procedures identify what experimental and
observational findings need be obtained from the two populations, and how they can be combined to
ensure bias-free transport. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

22 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 
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rubrics such as “external validity” (Campbell and Stanley (1963); Manski (2007)),
“meta-analysis” (Glass (1976); Hedges and Olkin (1985); Owen (2009)), “hetero-
geneity” (Höfler et al. (2010)), “quasi-experiments” ((Shadish et al., 2002, Ch.
3); Adelman (1991)),1 consists primarily of threats, namely, verbal narratives
of what can go wrong when we try to transport results from one study to an-
other. Rarely do we find an analysis of “licensing assumptions,” namely, formal
conditions under which the transport of results across differing environments or
populations is licensed from first principles.2

The reasons for this asymmetry are several. First, threats are safer to cite than
assumptions. He who cites “threats” appears prudent, cautious and thoughtful,
whereas he who seeks licensing assumptions risks suspicions of attempting to
endorse those assumptions.

Second, assumptions are self destructive in their honesty. The more explicit
the assumption, the more criticism it invites, for it tends to trigger a richer space
of alternative scenarios in which the assumption may fail. Researchers prefer
therefore to declare threats in public and make assumptions in private.

Third, whereas threats can be communicated in plain English, supported by
anecdotal pointers to familiar experiences, assumptions require a formal language
within which the notion “environment” (or “population”) is given precise char-
acterization, and differences among environments can be encoded and analyzed.

The advent of causal diagrams (Pearl, 1995; Greenland et al., 1999; Spirtes et al.,
2000; Pearl, 2009b) provides such a language and renders the formalization of
transportability possible.

Armed with this language, this paper departs from the tradition of communi-
cating “threats” and embarks instead on the more adventurous task of formulat-
ing “licenses to transport,” namely, assumptions that, if held true, would permit
us to transport results across studies.

In addition, the paper uses the inferential machinery of the do-calculus (Pearl,
1995; Koller and Friedman, 2009) to derive algorithms for deciding whether trans-
portability is feasible and how experimental and observational findings can be
combined to yield unbiased estimates of causal effects in the target population.

The paper is organized as follows. In section 2, we review the foundations
of structural equations modelling (SEM), the question of identifiability, and the
do-calculus that emerges from these foundations. (This section can be skipped
by readers familiar with these concepts and tools.) In section 3, we motivate
the question of transportability through simple examples, and illustrate how the
solution depends on the causal story behind the problem. In section 4, we formally
define the notion of transportability and reduce it to a problem of symbolic
transformations in do-calculus. In section 5, we provide a graphical criterion for

1Manski (2007) defines “external validity” as follows: “An experiment is said to have “exter-
nal validity” if the distribution of outcomes realized by a treatment group is the same as the
distribution of outcome that would be realized in an actual program.” (Campbell and Stanley,
1963, p. 5) take a slightly broader view: ““External validity” asks the question of generalizabil-
ity: to what population, settings, treatment variables, and measurement variables can this effect
be generalized?”

2Hernán and VanderWeele (2011) studied such conditions in the context of compound treat-
ments, where we seek to predict the effect of one version of a treatment from experiments with a
different version. Their analysis is a special case of the theory developed in this paper (Petersen,
2011). A related application is reported in Robins et al. (2008) where a treatment strategy is
extrapolated between two biological similar populations under different observational regimes.
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deciding transportability and estimating transported causal effects. We conclude
in section 6 with brief discussions of related problems of external validity, these
include statistical transportability, surrogate endpoint and meta-analysis.

2. PRELIMINARIES: THE LOGICAL FOUNDATIONS OF CAUSAL

INFERENCE

The tools presented in this paper were developed in the context of nonparamet-
ric Structural Equations Models (SEM), which is one among several approaches
to causal inference. Other approaches include, for example, potential-outcomes
(Rubin, 1974), Structured Tree Graphs (Robins, 1986), decision analytic (Dawid,
2002), and Causal Bayesian Networks (Spirtes et al. (2000); (Pearl, 2000, Ch. 1)).
We will first describe the generic features common to all such approaches, and
then summarize how these features are represented in SEM.3

2.1 Causal models as inference engines

From a logical viewoint, causal analysis relies on causal assumptions that can-
not be deduced from (nonexperimental) data. Thus, every approach to causal in-
ference must provide a systematic way of encoding, testing and combining these
assumptions with data. Accordingly, we view causal modeling as an inference
engine that takes three inputs and produces three outputs. The inputs are:

I-1. A set A of qualitative causal assumptions which the investigator is prepared
to defend on scientific grounds, and a model MA that encodes these as-
sumptions mathematically. (In SEM, MA takes the form of a diagram or
a set of unspecified functions. A typical assumption is that no direct effect
exists between a pair of variables, or that an omitted factor, represented by
an error term, is uncorrelated with some other factors.)

I-2. A set Q of queries concerning causal or counterfactual relationships among
variables of interest. In linear SEM, Q concerned the magnitudes of struc-
tural coefficients but, in general, Q may address causal relations directly,
e.g.,

Q1 : What is the effect of treatment X on outcome Y ?

Q2 : Is this employer guilty of gender discrimination?

In principle, each query Qi ∈ Q should be computable from any fully spec-
ified model M compatible with A.

I-3. A set D of experimental or non-experimental data, governed by a joint prob-
ability distribution presumably consistent with A.

The outputs are

O-1. A set A∗ of statements which are the logical implications of A, separate
from the data at hand. For example, that X has no effect on Y if we hold
Z constant, or that Z is an instrument relative to {X, Y }.

O-2. A set C of data-dependent claims concerning the magnitudes or likelihoods
of the target queries in Q, each contingent on A. C may contain, for example,
the estimated mean and variance of a given structural parameter, or the

3While comparisons of the various approaches lie beyond the scope of this paper, we never-
theless propose that their merits be judged by the extent to which each facilitates the functions
described below.
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expected effect of a given intervention. Auxiliary to C, a causal model
should also yield an estimand Qi(P ) for each query in Q, or a determination
that Qi is not identifiable from P (Definition 2.)

O-3. A list T of testable statistical implications of A, and the degree g(Ti), Ti ∈
T , to which the data agrees with each of those implications. A typical
implication would be a conditional independence assertion, or an equal-
ity constraint between two probabilistic expressions. Testable constraints
should be read from the model MA (see Definition 3.), and used to confirm
or disconfirm the model against the data.

The structure of this inferential exercise is shown schematically in Figure 1. For
a comprehensive review on methodological issues, see (Pearl (2009a, 2012a)).

Q  D, A(       )

Conditional claims Model testing

Data(   )D

g  T(   )

Q −Queries of interest

Identified estimands(   ) −Q  P Testable implicationsT  MA(      ) −

LogicalA* − 
implications ofA

CAUSALA − 
ASSUMPTIONS

M(      )A

CAUSAL
MODEL

Estimates of     (   )Q − PQ

Statistical inference

Causal inference

Goodness of fit

Fig 1. Causal analysis depicted as the an inference engine converting assumptions (A), queries
(Q), and data (D) into logical implications (A∗), conditional claims (C), and data-fitness indices
(g(T )).

2.2 Causal Assumptions in Nonparametric Models

A structural equation model (SEM) M is defined as follows:

Definition 1 (Structural Equation Model). (Pearl, 2000, p. 203)

1. A set U of background or exogenous variables, representing factors outside
the model, which nevertheless affect relationship within the model.

2. A set V = {V1, ..., Vn} of endogenous variables, assumed to be observable.
Each of these variables is functionally dependent on some subset PAi of
U ∪ V \ {Vi}.

3. A set F of functions {f1, ..., fn} such that each fi determines the value of
Vi ∈ V , vi = fi(pai, u).

4. A joint probability distribution P (u) over U .
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Z X YZ X Y
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0x
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U U U
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X YZ

Fig 2. The diagrams associated with (a) the structural model of equation (3.5) and (b) the
modified model of equation (2.2), representing the intervention do(X = x0).

A simple SEM model is depicted in Fig. 2(a), which represents the following
three functions:

z = fZ(uZ)

x = fX(z, uX)(2.1)

y = fY (x, uY ),

where in this particular example, UZ , UX and UY are assumed to be jointly inde-
pendent but otherwise arbitrarily distributed. Each of these functions represents
a causal process (or mechanism) that determines the value of the left variable
(output) from the values on the right variables (inputs), and is assumed to be
invariant unless explicitly intervened on. The absence of a variable from the right-
hand side of an equation encodes the assumption that nature ignores that variable
in the process of determining the value of the output variable. For example, the
absence of variable Z from the arguments of fY conveys the empirical claim that
variations in Z will leave Y unchanged, as long as variables UY and X remain
constant.

2.3 Representing Interventions, Counterfactuals and Causal effects

This feature of invariance permits us to derive powerful claims about causal
effects and counterfactuals, even in nonparametric models, where all functions
and distributions remain unknown. This is done through a mathematical operator
called do(x), which simulates physical interventions by deleting certain functions
from the model, replacing them with a constant X = x, while keeping the rest of
the model unchanged. For example, to emulate an intervention do(x0) that holds
X constant (at X = x0) in model M of Figure 2(a), we replace the equation for
x in equation (2.1) with x = x0, and obtain a new model, Mx0 ,

z = fZ(uZ)

x = x0(2.2)

y = fY (x, uY ),

the graphical description of which is shown in Figure 2(b).
The joint distribution associated with the modified model, denoted P (z, y|do(x0))

describes the post-intervention distribution of variables Y and Z (also called
“controlled” or “experimental” distribution), to be distinguished from the prein-
tervention distribution, P (x, y, z), associated with the original model of equation
(2.1). For example, if X represents a treatment variable, Y a response variable,
and Z some covariate that affects the amount of treatment received, then the
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distribution P (z, y|do(x0)) gives the proportion of individuals that would attain
response level Y = y and covariate level Z = z under the hypothetical situation
in which treatment X = x0 is administered uniformly to the population.4

In general, we can formally define the postintervention distribution by the
equation

(2.3) PM (y|do(x)) = PMx
(y)

In words, in the framework of model M , the postintervention distribution of
outcome Y is defined as the probability that model Mx assigns to each outcome
level Y = y. From this distribution, which is readily computed from any fully
specified model M , we are able to assess treatment efficacy by comparing aspects
of this distribution at different levels of x0.

5

2.4 Identification, d-separation and Causal Calculus

A central question in causal analysis is the question of identification in partially
specified models: Given assumptions set A (as embodied in the model), can the
controlled (postintervention) distribution, P (y|do(x)), be estimated from data
governed by the preintervention distribution P (z, x, y)?

In linear parametric settings, the question of identification reduces to asking
whether some model parameter, β, has a unique solution in terms of the parame-
ters of P (say the population covariance matrix). In the nonparametric formula-
tion, the notion of “has a unique solution” does not directly apply since quantities
such as Q(M) = P (y|do(x)) have no parametric signature and are defined proce-
durally by simulating an intervention in a causal model M , as in equation (2.2).
The following definition captures the requirement that Q be estimable from the
data:

Definition 2 (Identifiability). (Pearl, 2000, p. 77)
A causal query Q(M) is identifiable, given a set of assumptions A, if for any two
models (fully specified) M1 and M2 that satisfy A, we have

(2.4) P (M1) = P (M2)⇒ Q(M1) = Q(M2)

In words, the functional details of M1 and M2 do not matter; what matters is
that the assumptions in A (e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equality of P ’s would entail
equality of Q’s. When this happens, Q depends on P only, and should therefore
be expressible in terms of the parameters of P .

When a query Q is given in the form of a do-expression, for example Q =
P (y|do(x), z), its identifiability can be decided systematically using an algebraic
procedure known as the do-calculus (Pearl, 1995). It consists of three inference

4Equivalently, P (z, y|do(x0)) can be interpreted as the joint probability of (Z = z, Y = y)
under a randomized experiment among units receiving treatment level X = x0. Readers versed
in potential-outcome notations may interpret P (y|do(x), z) as the probability P (Yx = y|Zx = z),
where Yx is the potential outcome under treatment X = x.

5Counterfactuals are defined similarly through the equation Yx(u) = YMx
(u) (see (Pearl,

2009b, Ch. 7)), but will not be needed for the discussions in this paper.
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rules that permit us to map interventional and observational distributions when-
ever certain conditions hold in the causal diagram G.

The conditions that permit the application these inference rules can be read
off the diagrams using a graphical criterion known as d-separation (Pearl, 1988).

Definition 3 (d-separation).
A set S of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in S, or
2. p contains at least one collision node that is outside S and has no descendant

in S.

If S blocks all paths from set X to set Y , it is said to “d-separate X and Y,” and
then, it can be shown that variables X and Y are independent given S, written
X⊥⊥Y |S.6

D-separation reflects conditional independencies that hold in any distribution
P (v) that is compatible with the causal assumptions A embedded in the diagram.
To illustrate, the path UZ → Z → X → Y in Figure 2(a) is blocked by S = {Z}
and by S = {X}, since each emits an arrow along that path. Consequently we can
infer that the conditional independencies UZ⊥⊥Y |Z and UZ⊥⊥Y |X will be satisfied
in any probability function that this model can generate, regardless of how we
parametrize the arrows. Likewise, the path UZ → Z → X ← UX is blocked by
the null set {∅}, but it is not blocked by S = {Y } since Y is a descendant of the
collision node X. Consequently, the marginal independence UZ⊥⊥UX will hold in
the distribution, but UZ⊥⊥UX |Y may or may not hold.7

2.5 The Rules of do-calculus

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.
We denote by G

X
the graph obtained by deleting from G all arrows pointing to

nodes in X. Likewise, we denote by GX the graph obtained by deleting from G

all arrows emerging from nodes in X. To represent the deletion of both incoming
and outgoing arrows, we use the notation G

XZ
.

The following three rules are valid for every interventional distribution com-
patible with G.

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X

(2.5)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )G
XZ

(2.6)

6See Hayduk et al. (2003), Mulaik (2009), and Pearl (2009b, p. 335) for a gentle introduction
to d-separation and its proof.

7This special handling of collision nodes (or colliders, e.g., Z → X ← UX) reflects a general
phenomenon known as Berkson’s paradox (Berkson, 1946), whereby observations on a common
consequence of two independent causes render those causes dependent. For example, the out-
comes of two independent coins are rendered dependent by the testimony that at least one of
them is a tail.
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Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

,(2.7)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .
To establish identifiability of a query Q, one needs to repeatedly apply the rules

of do-calculus to Q, until the final expression no longer contains a do-operator8;
this renders it estimable from non-experimental data. The do-calculus was proven
to be complete to the identifiability of causal effects (Shpitser and Pearl, 2006;
Huang and Valtorta, 2006), which means that if an equality cannot be established
by repeated application of these three rules, this equality cannot be obtained by
any other method.

We shall see that, to establish transportability, the goal will be different; instead
of eliminating do-operators, we will need to separate them from a set of variables
S that represent disparities between populations.

3. INFERENCE ACROSS POPULATIONS: MOTIVATING EXAMPLES

To motivate the formal treatment of Section 4, we first demonstrate some of
the subtle questions that transportability entails through three simple examples,
graphically depicted in Fig. 3.

X Y X Y X Y

(c)(b)(a)

Z

Z

Z

Fig 3. Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z represents
“linguistic skills” while age (in hollow circle) is unmeasured. In (c) Z represents a biological
marker situated between the treatment (X) and a disease (Y ).

Example 1. We conduct a randomized trial in Los Angeles (LA) and esti-
mate the causal effect of exposure X on outcome Y for every age group Z = z

as depicted in Fig. 3(a). We now wish to generalize the results to the population
of New York City (NYC), but data alert us to the fact that the study distribution
P (x, y, z) in LA is significantly different from the one in NYC (call the latter
P ∗(x, y, z)). In particular, we notice that the average age in NYC is significantly
higher than that in LA. How are we to estimate the causal effect of X on Y in
NYC, denoted P ∗(y|do(x)).

Our natural inclination would be to assume that age-specific effects are in-
variant across cities and so, if the LA study provides us with (estimates of)

8Such derivations are illustrated in graphical details in (Pearl, 2009b, pp. 87).
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age-specific causal effects P (y|do(x), Z = z), the overall causal effect in NYC
should be

(3.1) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z)

This transport formula combines experimental results obtained in LA, P (y|do(x), z),
with observational aspects of NYC population, P ∗(z), to obtain an experimental
claim P ∗(y|do(x)) about NYC.9

Our first task in this paper will be to explicate the assumptions that renders
this extrapolation valid. We ask, for example, what must we assume about other
confounding variables beside age, both latent and observed, for Eq. (3.1) to be
valid, or, would the same transport formula hold if Z was not age, but some
proxy for age, say, language proficiency. More intricate yet, what if Z stood for
an exposure-dependent variable, say hyper-tension level, that stands between X

and Y ?
Let us examine the proxy issue first.

Example 2. Let the variable Z in Example 1 stand for subjects language
proficiency, and let us assume that Z does not affect exposure (X) or outcome
(Y ), yet it correlates with both, being a proxy for age which is not measured in
either study (see Fig. 3(b)). Given the observed disparity P (z) 6= P ∗(z), how are
we to estimate the causal effect P ∗(y|do(x)) for the target population of NYC
from the z-specific causal effect P (y|do(x), z) estimated at the study population
of LA?

The inequality P (z) 6= P ∗(z) in this example may reflect either age difference or
differences in the way that Z correlates with age. If the two cities enjoy identical
age distributions and NYC residents acquire linguistic skills at a younger age,
then, since Z has no effect whatsoever on X and Y , the inequality P (z) 6= P ∗(z)
can be ignored and, intuitively, the proper transport formula would be

(3.2) P ∗(y|do(x)) = P (y|do(x))

If, on the other hand, the conditional probabilities P (z|age) and P ∗(z|age) are
the same in both cities, and the inequality P (z) 6= P ∗(z) reflects genuine age
differences, Eq. (3.2) is no longer valid, since the age difference may be a critical
factor in determining how people react to X. We see, therefore, that the choice of
the proper transport formula depends on the causal context in which population
differences are embedded.

This example also demonstrates why the invariance of Z-specific causal effects
should not be taken for granted. While justified in Example 1, with Z = age, it
fails in Example 2, in which Z was equated with “language skills.” Indeed, using

9At first glance, Eq. (3.1) may be regarded as a routine application of “standardization”
– a statistical extrapolation method that can be traced back to a century-old tradition in
demography and political arithmetic (Westergaard, 1916; Yule, 1934; Lane and Nelder, 1982;
Cole and Stuart, 2010). On a second thought it raises the deeper question of why we consider
age-specific effects to be invariant across populations. See discussion following Example 2.
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Fig. 3(b) for guidance, the Z-specific effect of X on Y in NYC is given by:

P ∗(y|do(x), z) =
∑

age

P ∗(y|do(x), z, age)P ∗(age|do(x), z)

=
∑

age

P ∗(y|do(x), age)P ∗(age|z)

=
∑

age

P (y|do(x), age)P ∗(age|z)

Thus, if the two populations differ in the relation between age and skill, i.e.,

P (age|z) 6= P ∗(age|z)

the skill-specific causal effect would differ as well.
The intuition is clear. A NYC person at skill level Z = z is likely to be in a

totally different age group from his skill-equals in Los Angeles and, since it is
age, not skill that shapes the way individuals respond to treatment, it is only
reasonable that Los Angeles residents would respond differently to treatment
than their NYC counterparts at the very same skill level.

The essential difference between Examples 1 and 2 is that age is normally
taken to be an exogenous variable (not assigned by other factors in the model)
while skills may be indicative of earlier factors (age, education, ethnicity) capable
of modifying the causal effect. Therefore, conditional on skill, the effect may be
different in the two populations.

Example 3. Examine the case where Z is a X-dependent variable, say a
disease bio-marker, standing on the causal pathways between X and Y as shown
in Fig. 3(c). Assume further that the disparity P (z) 6= P ∗(z) is discovered in
each level of X and that, again, both the average and the z-specific causal effect
P (y|do(x), z) are estimated in the LA experiment, for all levels of X and Z. Can
we, based on information given, estimate the average (or z-specific) causal effect
in the target population of NYC?10

Here, Eq. (3.1) is wrong for two reasons. First, as in the case of age-proxy, it
matters whether the disparity in P (z) represents differences in susceptibility to X

or differences in propensity to receiving X. In the latter case, Eq. (3.2) would be
valid, while in the former, more information is needed. Second, the overall causal
effect (in both LA and NYC) is no longer a simple average of the z-specific causal
effects. To witness, consider an unconfounded Markov chain X → Z → Y ; the
z-specific causal effect P (y|do(x), z) is P (y|z), independent of x, while the overall
causal effect is P (y|do(x)) = P (y|x) which is clearly dependent on x. The latter
could not be obtained by averaging over the former. The correct weighing rule is

P (y|do(x)) =
∑

z

P (y, z|do(x))(3.3)

=
∑

z

P (y|do(x), z)P (z|do(x))(3.4)

10This is precisely the problem that motivated the unsettled literature on “surrogate
endpoint” (Prentice, 1989; Freedman et al., 1992; Frangakis and Rubin, 2002; Baker, 2006;
Joffe and Green, 2009; Pearl, 2011), that is, using the effect of X on Z to predict the effect
of X on Y in a population with potentially differing characteristics. A robust solution to this
problem is offered in Pearl and Bareinboim (2011).
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which reduces to (3.1) only in the special case where Z is unaffected by X, as is
the case in Fig. 3(a). Thus, in general, both P (y|do(x), z) and P (z|do(x)) need be
measured in the experiment before we can transport results to populations with
differing characteristics. In the Markov chain example, if the disparity in P (z)
stems only from a difference in people’s susceptibility to X (say, due to preventive
measures taken in one city and not the other) then the correct transport formula
would be

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x)(3.5)

=
∑

z

P (y|z)P ∗(z|x)(3.6)

which is different from both (3.1) and (3.2), and hardly makes any use of exper-
imental findings.

In case X and Y are confounded and directly connected, as in Fig. 3(c), it is
Eq. (3.5) which provides the correct transport formula (to be proven in Section
5), calling for the z-specific effects to be weighted by the conditional probabilities
P ∗(z|x), estimated at the target population.

4. FORMALIZING TRANSPORTABILITY

4.1 Selection diagrams and selection variables

A few patterns emerge from the examples discussed in Section 3. First, trans-
portability is a causal, not statistical notion. In other words, the conditions that
license transport as well as the formulas through which results are transported
depend on the causal relations between the variables in the domain, not merely on
their statistics. When we asked, for instance (in Example 3), whether the change
in P (z) was due to differences in P (x) or due to a change in the way Z is affected
by X, the answer cannot be determined by comparing P (x) and P (z|x) to P ∗(x)
and P ∗(z|x). If X and Z are confounded (e.g., Fig. 6(e)), it is quite possible for
the inequality P (z|x) 6= P ∗(z|x) to hold, reflecting differences in confounding,
while the way that Z is affected by X, (i.e., P (z|do(x))) is the same in the two
populations.

Second, licensing transportability requires knowledge of the mechanisms, or
processes, through which population differences come about; different localiza-
tion of these mechanisms yield different transport formulae. This can be seen
most vividly in Example 2 (Fig. 3(b)) where we reasoned that no weighing is
necessary if the disparity P (z) 6= P ∗(z) originates with the way language profi-
ciency depends on age, while the age distribution itself remains the same. Yet,
because age is not measured, this condition cannot be detected in the probability
distribution P , and cannot be distinguished from an alternative condition,

P (age) 6= P ∗(age) and P (z|age) = P ∗(z|age)

one that may require weighting according to to Eq. (3.1). In other words, every
probability distribution P (x, y, z) that is compatible with the process of Fig.
3(b) is also compatible with that of Fig. 3(a) and, yet, the two processes dictate
different transport formulas.

Based on these observations, it is clear that if we are to represent formally
the differences between populations (similarly, between experimental settings or
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environments), we must resort to a representation in which the causal mechanisms
are explicitly encoded and in which differences in populations are represented as
local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection
variables,” where each member of S corresponds to a mechanism by which the two
populations differ, and switching between the two populations will be represented
by conditioning on different values of these S variables.

Intuitively, if P (v|do(x)) stands for the distribution of a set V of variables in
the experimental study (with X randomized) then we designate by P ∗(v|do(x))
the distribution of V if we were to conduct the study on population Π∗ instead
of Π. We now attribute the difference between the two to the action of a set S of
selection variables, and write11 12

P ∗(v|do(x)) = P (v|do(x), s∗).

Of equal importance is the absence of an S variable pointing to Y in Fig. 4(a),
which encodes the assumption that age-specific effects are invariant across the
two populations.

The selection variables in S may represent all factors by which populations may
differ or that may “threaten” the transport of conclusions between populations.
For example, the age disparity P (z) 6= P ∗(z) discussed in Example 1 will be
represented by the inequality

P (z) 6= P (z|s)

where S stands for all factors responsible for drawing subjects at age Z = z to
NYC rather than LA.

This graphical representation, which we will call “selection diagrams” is defined
as follows:13

Definition 4 (Selection Diagram). Let 〈M,M∗〉 be a pair of structural causal
models (Definition 1) relative to domains 〈Π,Π∗〉, sharing a causal diagram G.
〈M,M∗〉 is said to induce a selection diagram D if D is constructed as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si → Vi whenever there exists a discrepancy

fi 6= f∗

i or P (Ui) 6= P ∗(Ui) between M and M∗.

In summary, the S-variables locate the mechanisms where structural discrep-
ancies between the two populations are suspected to take place. Alternatively,
the absence of a selection node pointing to a variable represents the assumption
that the mechanism responsible for assigning value to that variable is the same

11Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and
P (v|do(x), s∗), respectively. The results, however, will be the same, since only the location of S

enters the analysis.
12Pearl (1995; 2009b, p. 71) and Dawid (2002), for example, use conditioning on auxiliary

variables to switch between experimental and observational studies. Dawid (2002) further uses
such variables to represent changes in parameters of probability distributions.

13The assumption that there are no structural changes between domains can be relaxed
starting with D = G∗ and adding S-nodes following the same procedure as in Def. 4, while
enforcing acyclicity.
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in the two populations. In the extreme case, we could add selection nodes to all
variables, which means that we have no reason to believe that the populations
share any mechanism in common, and this, of course would inhibit any exchange
of information among the populations. The invariance assumptions between pop-
ulations, as we will see, will open the door for the transport of some experimental
findings.

S

X Y

(c)(b)(a)

Z

S

Z

Z

S

X Y X Y

Fig 4. Selection diagrams depicting Examples 1–3. In (a) the two populations differ in age
distributions. In (b) the populations differs in how Z depends on age (an unmeasured variable,
represented by the hollow circle) and the age distributions are the same. In (c) the populations
differ in how Z depends on X.

For clarity, we will represent the S variables by squares, as in Fig. 4, which
uses selection diagrams to encode the three examples discussed in Section 3. In
particular, Fig. 4(a) and 4(b) represent, respectively, two different mechanisms
responsible for the observed disparity P (z) 6= P ∗(z). The first (Fig. 4(a)) dictates
transport formula (1) while the second (Fig. 4(b)) calls for direct, unadjusted
transport (2). Clearly, if the age distribution in the target population is different
relative to that of the study population (Fig. 4(a)) we will represent this difference
in the form of an unspecified influence that operates on the age variable Z and
results in the difference between P ∗(age) = P (age|S = s∗) and P (age).

In this paper, we will address the issue of transportability assuming that scien-
tific knowledge about invariance of certain mechanisms is available and encoded
in the selection diagram through the S nodes. Such knowledge is, admittedly,
more demanding than that which shapes the structure of each causal diagram
in isolation. It is, however, a prerequisite for any scientific extrapolation, and
constitutes therefore a worthy object of formal analysis.

4.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing
the concepts of intervention, do-calculus, and identifiability (Section 2), we can
now give the notion of transportability a formal definition.

Definition 5 (Transportability). Let D be a selection diagram relative to
domains 〈Π,Π∗〉. Let 〈P, I〉 be the pair of observational and interventional distri-
butions of Π, and P ∗ be the observational distribution of Π∗. The causal relation
R(Π∗) = P ∗(y|do(x), z) is said to be transportable from Π to Π∗ in D if R(Π∗)
is uniquely computable from P,P ∗, I in any model that induces D.
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Two interesting connections between identifiability and transportability are
worth noting. First, note that all identifiable causal relations in D are also trans-
portable, because they can be computed directly from P ∗ and require no ex-
perimental information from Π. Second, note that given causal diagram G, one
can produce a selection diagram D such that identifiability in G is equivalent to
transportability in D. First set D = G, and then add selection nodes pointing to
all variables in D, which represents that the target domain does not share any
mechanism with its counterpart – this is equivalent to the problem of identifiabil-
ity because the only way to achieve transportability is to identify R from scratch
in the target population.

While the problems of identifiability and transportability are related, proofs of
non-transportability are more involved than those of non-identifiability for they
require one to demonstrate the non-existence of two competing models compatible
with D, agreeing on {P,P ∗, I}, and disagreeing on R(Π∗).

Definition 5 is declarative, and does not offer an effective method of demon-
strating transportability even in simple models. Theorem 1 offers such a method
using a sequence of derivations in do-calculus.

Theorem 1. Let D be the selection diagram characterizing two populations,
Π and Π∗, and S a set of selection variables in D. The relation R = P ∗(y|do(x), z)
is transportable from Π to Π∗ if the expression P (y|do(x), z, s) is reducible, using
the rules of do-calculus, to an expression in which S appears only as a conditioning
variable in do-free terms.

Proof. Every relation satisfying the condition of Theorem 1 can be written
as an algebraic combination of two kinds of terms, those that involve S and
those that do not. The formers can be written as P ∗-terms and are estimable,
therefore, from observations on Π∗, as required by Definition 5. All other terms,
especially those involving do-operators, do not contain S; they are experimentally
identifiable therefore in Π.

This criterion was proven to be both sufficient and necessary for causal effects,
namely R = P (y|do(x)) (Bareinboim and Pearl, 2012).

Theorem 1, though procedural, does not specify the sequence of rules leading
to the needed reduction when such a sequence exists. In the sequel (Theorem 3),
we establish a more effective procedure of confirming transportability, which is
guided by two recognizable subgoals.

Definition 6. (Trivial Transportability)
A causal relation R is said to be trivially transportable from Π to Π∗, if R(Π∗)
is identifiable from (G∗, P ∗).

This criterion amounts to an ordinary test of identifiability of causal relations
using graphs, as given by Definition 2. It permits us to estimate R(Π∗) directly
from observational studies on Π∗, un-aided by causal information from Π.

Example 4. Let R be the causal effect P (y|do(x)) and let the selection di-
agram of Π and Π∗ be given by X → Y ← S, then R is trivially transportable,
since R(Π∗) = P ∗(y|x).
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Another special case of transportability occurs when a causal relation has iden-
tical form in both domains – no recalibration is needed.

Definition 7. (Direct Transportability)
A causal relation R is said to be directly transportable from Π to Π∗, if R(Π∗) =
R(Π).

A graphical test for direct transportability of R = P (y|do(x), z) follows from
do-calculus and reads: (S ⊥⊥ Y |X,Z)G

X
; in words, X blocks all paths from S

to Y once we remove all arrows pointing to X and condition on Z. As a concrete
example, this test is satisfied in Fig. 3(a), and therefore, the z-specific effects is
the same in both populatons; it is directly transportable.
Remark.

The notion of “external validity” as defined by Manski (2007) (footnote 1) cor-
responds to Direct Transportability, for it requires that R retains its validity
without adjustment, as in Eq. (3.2). Such conditions restrict us from using infor-
mation from Π∗ to recalibrate R.

Example 5. Let R be the causal effect of X on Y , and let D have a single
S node pointing to X, then R is directly transportable, because causal effects are
independent of the selection mechanism (see Pearl, 2009b, pp. 72–73).

Example 6. Let R be the z-specific causal effect of X on Y P (y|do(x), z)
where Z is a set of variables, and P and P ∗ differ only in the conditional
probabilities P (z|pa(Z)) and P ∗(z|pa(Z)) such that Z⊥⊥Y |pa(Z), as shown in
Fig. 4(b). Under these conditions, R is not directly transportable. However, the
pa(Z)-specific causal effects P (y|do(x), pa(Z)) are directly transportable, and so
is P (y|do(x)). Note that, due to the confounding arcs, none of these quantities is
identifiable.

5. TRANSPORTABILITY OF CAUSAL EFFECTS - A GRAPHICAL

CRITERION

We now state and prove two theorems that permit us to decide algorithmi-
cally, given a selection diagram, whether a relation is transportable between two
populations, and what the transport formula should be.

Theorem 2. Let D be the selection diagram characterizing two populations,
Π and Π∗, and S the set of selection variables in D. The strata-specific causal
effect P ∗(y|do(x), z) is transportable from Π to Π∗ if Z d-separates Y from S in
the X-manipulated version of D, that is, Z satisfies (Y⊥⊥S|Z)D

X
.

Proof.

P ∗(y|do(x), z) = P (y|do(x), z, s∗)

From Rule-1 of do-calculus we have: P (y|do(x), z, s∗) = P (y|do(x), z) whenever
Z satisfies (Y⊥⊥S|Z) in DX . This proves Theorem 2.

Definition 8. (S-admissibility)
A set T of variables satisfying (Y⊥⊥S|T ) in DX will be called S-admissible (with
respect to the causal effect of X on Y ).
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S

X Y

S

Z Z

(a)
Y

W

X
(b)

Fig 5. Selection diagrams illustrating S-admissibility. (a) has no S-admissible set while in (b),
W is S-admissible.

Corollary 1. The average causal effect P ∗(y|do(x)) is transportable from
Π to Π∗ if there exists a set Z of observed pre-treatment covariates that is S-
admissible. Moreover, the transport formula is given by the weighting of Eq. (3.1).

Example 7. The causal effect is transportable in Fig. 4(a), since Z is S-
admissible, and in Fig. 4(b), where the empty set is S-admissible. It is also trans-
portable by the same criterion in Fig. 5(b), where W is S-admissible, but not in
Fig. 5(a) where no S-admissible set exists.

Corollary 2. Any S variable that is pointing directly into X as in Fig.
6(a), or that is d-connected to Y only through X can be ignored.

This follows from the fact that the empty set is S-admissible relative to any
such S variable. Conceptually, the corollary reflects the understanding that dif-
ferences in propensity to receive treatment do not hinder the transportability of
treatment effects; the randomization used in the experimental study washes away
such differences.

We now generalize Theorem 2 to cases involving treatment-dependent Z vari-
ables, as in Fig. 4(c).

Theorem 3. The average causal effect P ∗(y|do(x)) is transportable from Π
to Π∗ if either one of the following conditions holds

1. P ∗(y|do(x)) is trivially transportable
2. There exists a set of covariates, Z (possibly affected by X) such that Z is

S-admissible and for which P ∗(z|do(x)) is transportable
3. There exists a set of covariates, W that satisfy (X⊥⊥Y |W,S)D and for which

P ∗(w|do(x)) is transportable.

Proof. 1. Condition (1) entails transportability.
2. If condition (2) holds, it implies

P ∗(y|do(x)) = P (y|do(x), s)(5.1)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s)(5.2)

=
∑

z

P (y|do(x), z)P ∗(z|do(x))(5.3)
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Z
Y

Z
YX

(c)

S

S

X
Z

Y
W

(d)

S

X
Z

Y

(e)

S

S S

(a)

(f)

Y
Z

X

(b)

YY XX

Fig 6. Selection diagrams illustrating transportability. The causal effect P (y|do(x)) is (trivially)
transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e) (see Corollary
2).

We now note that the transportability of P (z|do(x)) should reduce P ∗(z|do(x))
to a star-free expression and would render P (y|do(x)) transportable.

3. If condition (3) holds, it implies

P ∗(y|do(x)) =P (y|do(x), s)(5.4)

=
∑

w

P (y|do(x), w, s)P (w|do(x), s)(5.5)

=
∑

w

P (y|w, s)P ∗(w|do(x))(5.6)

(by Rule-3 of do-calculus)

=
∑

w

P ∗(y|w)P ∗(w|do(x))(5.7)

We similarly note that the transportability of P ∗(w|do(x)) should reduce
P (w|do(x), s) to a star-free expression and would render P ∗(y|do(x)) trans-
portable. This proves Theorem 3.

Remark.

The test entailed by Theorem 3 is recursive, since the transportability of one
causal effect depends on that of another. However, given that the diagram is finite
and feedback-free, the sets Z and W needed in conditions 2 and 3 of Theorem
3 would become closer and closer to X, and the iterative process will terminate
after a finite number of steps. This occurs because the causal effects P ∗(z|do(x))
(likewise, P ∗(w|do(x))) is trivially transportable and equals P (z) for any Z node
that is not a descendant of X. Thus, the need for reiteration applies only to those
members of Z that lie on the causal pathways from X to Y .

Example 8. Fig. 6(d) requires that we invoke both conditions of Theorem 3,
iteratively. To satisfy condition 2 we note that Z is S-admissible, and we need to
prove the transportability of P ∗(z|do(x)). To do that, we invoke condition 3 and
note that W d-separates X from Z in D. There remains to confirm the trans-
portability of P ∗(w|do(x)), but this is guaranteed by the fact that the empty set is
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S

S

ZWX Y

V

T

U

Fig 7. Selection diagram in which the causal effect is shown to be transportable in multiple
iterations of Theorem 3 (see Appendix 1).

S-admissible relative to W , since W⊥⊥S. Hence, by Theorem 2 (replacing Y with
W ) P ∗(w|do(x)) is transportable, which bestows transportability on P ∗(y|do(x)).
Thus, the final transport formula (derived formally in Appendix 1) is:

(5.8) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P (w|do(x))P ∗(z|w)

The first two factors on the right are estimable in the experimental study, and the
third through observational studies on the target population. Note that the joint
effect P ∗(y,w, z|do(x)) need not be estimated in the experiment; a decomposition
that results in improved estimation power.

A similar analysis proves the transportability of the causal effect in Fig. 6(e)
(see Pearl and Bareinboim (2011)). The model of Fig. 6(f) however does not allow
for the transportability of P (y|do(x)) because there is no S-admissible set in the
diagram and, furthermore, condition 3 of Theorem 3 cannot be invoked.

Example 9. To illustrate the power of Theorem 3 in discerning transporta-
bility and deriving transport formulae, Fig. 7 represents a more intricate selection
diagram, which requires several iteration to discern transportability. The transport
formula for this diagram is given by (derived formally in Appendix 1):

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)(5.9)

The main power of this formula is to guide investigators in deciding what
measurements need be taken in both the experimental study and the target pop-
ulation. It asserts, for example, that variables U and V need not be measured.
It likewise asserts that the W -specific causal effects need not be estimated in
the experimental study and only the conditional probabilities P ∗(z|w) and P ∗(t)
need be estimated in the target population. The derivation of this formulae is
given in Appendix 1.

Despite its power, Theorem 3 in not complete, namely, it is not guaranteed to
approve all transportable relations or to disapprove all non-transportable ones.
An example of the former is contrived in Bareinboim and Pearl (2012), which
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motivates the need of an alternative, necessary and sufficient condition for trans-
portability. Such condition has been established in Bareinboim and Pearl (2012),
where it is given in a graphical and algorithmic form. Theorem 3 provides, never-
theless, a simple and powerful method of establishing trasportability in practice.

6. CONCLUSIONS

Given judgemental assessments of how target populations may differ from those
under study, the paper offers a formal representational language for making these
assessments precise and for deciding whether causal relations in the target popu-
lation can be inferred from those obtained in an experimental study. When such
inference is possible, the criteria provided by Theorems 2 and 3 yield transport
formulae, namely, principled ways of calibrating the transported relations so as
to properly account for differences in the populations. These transport formulae
enable the investigator to select the essential measurements in both the exper-
imental and observational studies, and thus minimize measurement costs and
sample variability.

The inferences licensed by Theorem 2 and 3 represent worst case analysis, since
we have assumed, in the tradition nonparametric modeling, that every variable
may potentially be an effect-modifiers (or moderator.) If one is willing to assume
that certain relationships are non interactive, as is the case in additive models,
then additional transport licenses may be issued, beyond those sanctioned by
Theorems 2 and 3.

While the results of this paper concern the transfer of causal information from
experimental to observational studies, the method can also benefit in transporting
statistical findings from one observational study to another (Pearl and Bareinboim
(2011)). The rationale for such transfer is two fold. First, information from the
first study may enable researchers to avoid repeated measurement of certain vari-
ables in the target population. Second, by pooling data from both populations,
we increase the precision in which their commonalities are estimated and, indi-
rectly, also increase the precision by which the target relationship is transported.
Substantial reduction in sampling variability can be thus achieved through this
decomposition (Pearl (2012b)).

Clearly, the same data-sharing philosophy can be used to guide Meta-Analysis
(Rosenthal, 1995), where one attempts to combine results from many experimen-
tal and observational studies, each conducted on a different population and under
a different set of conditions, so as to construct an aggregate measure of effect size
that is ”better,” in some sense, than any one study in isolation. By exploiting
the commonalities among the populations studied and the target population, a
maximum use is made of the samples available (Pearl (2012b)).

The methodology described in this paper is also applicable in the selection of
surrogate endpoints, namely, variables that would allow good predictability of an
outcome for both treatment and control. (Ellenberg and Hamilton (1989)) Using
the representational power of “selection diagrams”, we have proposed a causally
principled definition of “surrogate endpoint” and showed procedurally how valid
surrogates can be identified in a complex network of cause-effect relationships
(Pearl and Bareinboim (2011).).

Of course, our entire analysis is based on the assumption that the analyst is in
possession of sufficient background knowledge to determine, at least qualitatively,
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where two populations may differ from one another. In practice, such knowledge
may only be partially available and, as is the case in every mathematical exercise,
the benefit of the analysis lies primarily in understanding what knowledge is
needed for the task to succeed and how sensitive conclusions are to knowledge
that we do not possess.
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APPENDIX 1

Derivation of the transport formula for the causal effect in the model of Fig.
6(d), (Eq. (5.8)),

P ∗(y|do(x)) = P (y|do(x), s)

=
∑

z

P (y|do(x), s, z)P (z|do(x), s)
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=
∑

z

P (y|do(x), z)P (z|do(x), s)

(

2nd condition of thm. 2, S-admissibility of Z of CE(X,Y )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), w, s)P (w|do(x), s)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x), s)

(

3rd condition of thm. 2, (X ⊥⊥ Z|S,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x))

(

2nd condition of thm. 2, S-admissibility of the empty set {} of CE(X,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)P (w|do(x))

(6.1)

Derivation of the transport formula for the causal effect in the model of Fig. 7,
(Eq. (5.9)).

P ∗(y|do(x)) =P (y|do(x), s, s′)

=
∑

z

P (y|do(x), s, s′, z)P (z|do(x), s, s′)

=
∑

z

P (y|do(x), z)P (z|do(x), s, s′)

(

2nd condition of thm. 2, S-admissibility of Z of CE(X,Z)
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), s, s′, w)P (w|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)P (w|do(x), s, s′)

(

3rd condition of thm. 2, (X ⊥⊥ Z|S, S′,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), s, s′, t)P (t|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|do(x), s, s′)

(

2nd condition of thm. 2, S-admissibility of T on CE(X,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|s, s′)

(

1st condition of thm. 2 / 3rd rule of do-calculus, (X ⊥⊥ T |S, S′)G
X̄

)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)

(6.2)
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